

# Understanding the hydrological impacts of upland peat restoration

**Martin Evans** 

Upland Environments Research Unit School of Environment and Development University of Manchester



### 'The Badlands of Britain' (Tallis, 1997)



UK has 15% of world resource of blanket peatlands but much of it is severely eroded





UPLAND ENVIRONMENTS RESEARCH UNIT

# The blanket peat erosion mosaic











Moorland Restoration and Hydrology

- Bleaklow
  Restoration
- Reseeding with utility grass seed, lime and fertiliser
- Heather Brash







#### **Progress of re-vegetation over 3 years**



What we think we know about upland peatland hydrology

Runoff Generation Mechanisms Runoff Pathways Runoff Timing and Magnitude



### **Relation between runoff and water table**





### Runoff and water table



Trout Beck, Moor House Intact (Evans et al 1999)

Upper North Grain, Bleaklow, Eroded (Daniels et al 2008)









### **Runoff Pathways**

| Source               | Mean and standard<br>deviation contribution to<br>total plot runoff % |  |  |  |  |  |
|----------------------|-----------------------------------------------------------------------|--|--|--|--|--|
| <b>Overland Flow</b> | 84.47 (18.61)                                                         |  |  |  |  |  |
| 1-5 cm depth flow    | 17.76 (18.64)                                                         |  |  |  |  |  |
| 5-10 cm depth flow   | 0.74 (1.77)                                                           |  |  |  |  |  |
| 10-50 cm depth flow  | 0.03 (0.07)                                                           |  |  |  |  |  |

Holden and Burt, 2000



### Importance of Pipeflow



Holden and Burt, 2001



# Runoff Magnitude and Timing – or...are peatlands sponges?

Impact of Moorland Management on Runoff Burnt Hill, Conway and Millar (1960)

Order of catchment flashiness is:

Drained/burnt eroded Drained Natural Natural





# Hydrograph Form

- Short Lag Times
- Short time to peak
- Rapid recession
- High ROP









### Restoration Study Catchments











| Runoff Ratios<br>from Bleaklow<br>Micro-<br>catchments |       | storm<br>start | Preci<br>p | API    | JN   | JS   | Р    | WH   | D    | TN   | TS   |
|--------------------------------------------------------|-------|----------------|------------|--------|------|------|------|------|------|------|------|
|                                                        | 3q-07 |                |            |        |      |      |      |      |      |      |      |
|                                                        |       | 13/08/2007     | 78.67      | 17.80  | 0.24 | 0.01 | 0.31 | -    | -    | 1.13 | -    |
|                                                        |       | 02/09/2007     | 28.02      | 24.26  | 0.38 | 0.03 | 0.27 | -    | -    | 0.85 | -    |
|                                                        |       | 19/09/2007     | 34.04      | 15.50  | 0.21 | 0.27 | 0.26 | -    | -    | 0.51 | 0.17 |
|                                                        |       | 21/09/2007     | 28.62      | 36.21  | 0.25 | 0.40 | 0.25 | -    | -    | 0.39 | 0.22 |
|                                                        |       | 23/09/2007     | 30.21      | 38.80  | 0.79 | 0.37 | 1.05 | -    | -    | 1.37 | 1.31 |
|                                                        | 4q-07 | 07/10/2007     | 36.37      | 30.70  | 0.55 | 0.00 | 0.39 | -    | -    | 0.66 | -    |
|                                                        |       | 27/10/2007     | 21.31      | 11.80  | 0.61 | 0.04 | 0.32 | -    | -    | 1.29 | -    |
|                                                        |       | 07/11/2007     | 7.42       | 16.20  | 0.38 | 0.00 | 0.22 | -    | -    | 1.30 | -    |
|                                                        |       | 08/11/2007     | 7.42       | 22.00  | 0.47 | 0.17 | 0.31 | -    | -    | 1.91 | -    |
|                                                        |       | 10/11/2007     | 19.80      | 25.30  | 0.39 | 0.06 | 0.27 | -    | -    | 1.33 | -    |
|                                                        |       | 20/11/2007     | 19.60      | 29.30  | 0.67 | 0.02 | 0.66 | -    | -    | 1.27 | -    |
|                                                        |       | 27/11/2007     | 54.96      | 28.80  | 0.48 | 0.05 | 0.38 | -    | -    | 0.28 | -    |
|                                                        |       | 05/12/2007     | 68.24      | 55.30  | 0.48 | 0.09 | 0.26 | -    | -    | 1.35 | -    |
|                                                        | 2q-08 | 27/05/2008     | 2.61       | 6.10   | 0.07 | -    | -    | -    | -    | -    | -    |
|                                                        |       | 02/06/2008     | 13.05      | 33.80  | 0.37 | -    | 0.38 | 1.26 | 0.26 | 1.87 | -    |
|                                                        |       | 21/06/2008     | 11.65      | 17.30  | 0.67 | -    | 0.26 | 1.10 | 0.04 | -    | -    |
|                                                        | 3q-08 | 16/07/2008     | 61.19      | 38.80  | 0.59 | -    | 0.39 | 1.13 | 1.69 | -    | -    |
|                                                        |       | 17/08/2008     | 26.64      | 60.40  | 0.45 | 0.03 | 0.33 | 1.04 | 1.12 | 1.54 | -    |
|                                                        |       | 05/09/2008     | 57.09      | 39.90  | 0.53 | -    | 0.60 | -    | 0.99 | -    | -    |
|                                                        |       | 12/09/2008     | 8.44       | 84.00  | 0.60 | 0.30 | 0.34 | 1.90 |      | 0.80 | -    |
|                                                        | 4q-08 | 07/10/2008     | 11.86      | 101.80 | 0.41 | 0.16 | 0.27 | 2.12 | 0.81 | -    | -    |
|                                                        |       | 21/10/2008     | 16.52      | 47.50  | 0.30 | 0.18 | 0.32 | 1.34 | 0.48 | -    | -    |
|                                                        |       | Mean           |            |        | 0.45 | 0.13 | 0.37 | 1.41 | 0.77 | 1.12 | 0.57 |

#### **The Dark Peak Water Table Project**







# Water table behaviour



UPLAND ENVIRONMENTS RESEARCH UNIT

# Controls on Water table





# Extent of gully edge drawdown





### Wetness index and water table













### Bare peat and restored (revegetated) sites Does restoration affect water table?





#### Water tables at bare peat and restored sites





# Re-vegetation and Runoff Velocity



Holden et al 2008 Water Resources Research



### **Research** questions

- If restoration raises water tables
  - What is the mechanism evaporation?
  - Effect on runoff generation and ROP?
- If restoration reduces overland flow velocities
  - Effect on timing of runoff delivery
- Need to examine the full water balance of restoration sites.



# Conclusions

- Whilst peatlands do not act as a sponge as commonly envisaged there are hydrological benefits to moorland restoration. There are also potential mechanisms by which moorland restoration might mitigate runoff
- The key to understanding these effects at the site scale is integrated monitoring of the full catchment water balances at restoration sites –initial work planned as part of MS4W
- Upscaling site scale understanding remains a major research challenge
- Doubtful that hydrological degradation is fully reversible gullies and pipes







